Question		n	Answer	Marks	Guidance	
1			$kx^{\frac{5}{2}+1}$	M1	<i>k</i> is any non-zero constant	
			$2x^{\frac{7}{2}}$ cao	A1		
			+ <i>c</i>	A1		
				[3]		

2	kx^{-2}		M1*		$k \neq 0$
	$-9x^{-2}$		A1	may be awarded later	no marks at all for responses based on
					" $mx + c$ "
	+2x+c		M1*	c may appear at substitution stage	
	substitution	the of $x = 3$ and $y = 6$ in their following integration	M1dep	on award of <i>either</i> of previous M1s	eg $6 = k3^{-2} + 2 \times 3 + c$
	c = 1	6	A1	A0 if spoiled by further working	for full marks, must see " <i>y</i> =" at some
					stage
			[5]		

3		$\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$	M1*		
		$4x^{\frac{3}{2}}$	A1	may appear later	
		-5x + c	B1	B0 if from $y = (6x^{\frac{1}{2}} - 5)x + c$	condone "+ c " not appearing until substitution
		substitution of (4, 20)	M1dep*		substitution
		$[y =] 4x^{15} - 5x + 8 \text{ or } c = 8 \text{ isw}$	A1 [5]		

PhysicsAndMathsTutor.com

4	$\frac{1}{2x^4} + 3x$	M1	accept unsimplified	ignore + c
	F[5] - F[2] [=327.5 - 14] =313.5 o.e.	MI A1	may be implied by A1	313.5 unsupported scores 0
	-515.5 0.0.			

5	$\frac{dy}{dx} = 6x^{\frac{1}{2}} - 2$ $y = kx^{\frac{3}{2}} - 2x + c$ o.e. $y = 4x^{\frac{3}{2}} - 2x + c$ o.e.	M2 A1	M1 for $kx^{\frac{3}{2}}$ and M1 for $-2x + c$	$x^{\frac{1}{6}}$ is a mistake, not a misread " $y =$ " need not be stated at this point, but must be seen at some point for full marks
	correct substitution of $x = 9$ and $y = 4$ in their equation of curve $y = 4x^{\frac{3}{2}} - 2x - 86$	M1 _{dep} A1	dependent on at least M1 already awarded allow A1 for $c = -86$ i.s.w. if simplified equation for y seen earlier	must see "+ c "

6	$6x^{-2}$	2	M1 for 1 term correct
	$x - \frac{3}{-2} \text{ o.e.}$ their $[5 + \frac{3}{25}] - [2 + \frac{3}{4}]$ = 2.37 o.e. c.a.o.	M1 A1	Dependent on at least M1 already earned i.s.w.

7	$2x^6 + 5x$ value at 2 – value at 1 131	M2 M1 A1	M1 if one error ft attempt at integration only	4
---	---	----------------	---	---

8	attempt to integrate $3\sqrt{x}$ – 5	M1		
	[y=] $2x^{\frac{3}{2}} - 5x + c$ subst of (4, 6) in their integrated eqn	A2 M1	A1 for two terms correct	
	$c = 10 \text{ or } [y=] 2x^{\frac{3}{2}} - 5x + 10$	A1		5

9	$[y =] kx^{3/2} [+ c]$ k = 4 subst of (9, 105) in their eqn with c or c = -3	M1 A1 M1 A1	may appear at any stage must have <i>c</i> ; must have attempted integration	4
---	--	----------------------	--	---

10	$x^{5}/5 - 3 x^{-1}/-1 + x$	B3	1 each term	
	[value at 2 – value at 1] attempted 5.7 c.a.o.	M1 A1	dep't on B2	5

Q	uestion	Answer	Marks	Guidance	
11		$kx^{\frac{5}{2}}$	M1		
		<i>k</i> = 12	A1		
		+ c	A1 [3]		

12	$x^{6} + kx^{\frac{5}{2}}$	M2	M1 for each term	
	$\frac{-6}{6} + kx^{2}$ $k = 4$ $+ c$	A1 A1 [4]	if at least M1 earned	